Preprints (in submission/review)

  1. Koussa, J.; Vitrinel, B.; Whitney, P.; Kasper, B.; Mahal, L.K.; Vogel, C.; Iustigman, S.; Salehi-Ashtiani, K.; Ghedin, E.  Sex-specific glycosylation of secreted immunomodulatory proteins in the filarial nematode Brugia malayi. bioRixv, 2021, doi: 10.1101/2021.02.24.432741‌


  1. Li, Z.; Bui, D.T.; Shao, S.; Kitova, E.; White, S.; Vesprini, D.; Liu, S.K.; Mahal, L.K.; Leong, H.S.; Klassen, J.S. Native Mass Spectrometry Quantitation of α2-3-linked N-Acetylneuraminic Acid Content of Prostate-Specific Antigen: An Accurate Liquid Biopsy for Clinically Significant Prostate Cancer, 2023, Analytical Chemistry, in Press. doi: 10.1021/acs.analchem.3c00289

  1. Bui, D.T.; Favell, J., Kitova; E., Li, Z.; McCord, K.A.; Schmidt, E.; Mozaneh, F.; Elaish, M.; El-Hawiet, A.;  St-Pierre Y.; Hobman, T.; Macauley, M.; Mahal, L.K.; Flynn, M.; Klassen, J.S. Absolute Affinities from Quantitative Shotgun Glycomics Using Concentration-Independent (COIN) Native Mass Spectrometry. ACS Central Science,  2023, in press. doi:10.1021/acscentsci.3c00294
  1. Wang, C.; Honce, R.; Salvatore, M.; Yang, J.; Twells, N.M.; Mahal, L.K.; Schultz-Cherry, S.; Ghedin, E. Reduced inflammatory response and promoted multiciliated cell differentiation in mice protected by defective interfering influenza virus. Journal of Virology,  2023, e00493-23. doi: 10.1128/jvi.00493-23. Formerly:  bioRixv, 2022, doi: 10.1101/2022.01.25.477719 
  1. Schmidt, E.N.; Lamprinaki, D.; McCord, K.A.; Joe, M.; Sojitra, M.; Waldow, A.; Nguyen, J.; Monyror, J.; Kitova, E.N.; Mozaneh, F.; Guo, X.Y.; Jung, J.; Enterina, J.R.; Daskhan, G.C.; Han, L.; Krysler, A.R.; Cromwell, C.R.; Hubbard, B.P.; West, L.J.; Kulka, M.; Sipione, S.; Klassen, J.S.; Derda, R.; Lowary, T.L.; Mahal, L.K.; Riddell, M.R.; Macauley, M.S. Siglec-6 mediates the uptake of extracellular vesicles through a noncanonical glycolipid binding pocket. Nature Communications, 2023, 14, 2327. doi: 10.1038/s41467-023-38030-6


  1. Jame-Chenarboo, F.; Ng, H.H.; Macdonald, D.; Mahal, L.K. High-throughput analysis reveals miRNA upregulating α-2,6-sialic acid through direct miRNA–mRNA interactions. ACS Central Science, 2022, 8 (11), 1527-1536 . doi: 10.1021/acscentsci.2c00748. Formerly bioRixv doi: 10.1101/2022.04.01.486772
  2. Qin, R.; Kurz, E.; Chen, S.; Zeck, B.; Chiribogas, L.; Jackson, D.; Herchen, A.; Attia, T.; Carlock, M.; Rapkiewicz, A.; Bar-Sagi, D.; Ritchie, B.; Ross, T.M.; Mahal, L.K. α2,6-sialylation is upregulated in severe COVID-19 implicating the complement cascade. ACS Infectious Diseases, 2022, 8 (11), 2348-2361. doi: 10.1021/acsinfecdis.2c00421. Formerly bioRixv doi: 10.1101/2022.06.06.22275981
  3. Qin, R.; Mahal, L.K.; Bojar, D. Deep learning explains the biology of branched glycans from single-cell sequencing data. iScience, 2022, 25 (10), 105163. doi: 10.1016/j.isci.2022.105163. Formerly bioRixv doi: 10.1101/2022.06.27.497708
  4. Bui, D.T.; Kitova, E.H.; Mahal, L.K.; Klassen, J.S. Mass spectrometry-based shotgun glycomics for discovery of natural ligands of glycan-binding proteins. Current Opinion in Structural Biology, 2022, 77, 1024-1048. doi: 10.1016/
  5. Cummings, R.; Etzler, M.; Hahn, M.G.; Darvill, A.; Godula, K.; Woods, R.J.; Mahal, L.K. Glycan-recognizing probes as tools. in: Essentials of Glycobiology, 4th Edition. Cold Spring Harbor (NY); Cold Spring Harbor Laboratory Press 2022, Ch. 48.
  6. Bui, D.T.; Li, Z.; Kitov, P.I., Han, L.; Kitova, E.N.; Fortier, M.; Fuselier, C.; de Boissel, P.G.J.; Chatenet, D.; Doucet, N.; Tompkins, S.M.; St-Pierre, Y.; Mahal, L.K.; Klassen, J.S. Quantifying biomolecular interactions using slow mixing mode (SLOMO) nanoflow ESI-MS. ACS Cent. Sci., 2022, 8, 963-974. doi: 10.1021/acscentsci.2c00215
  7. Xu, Z.; Choi, J.; Dai, D.L.; Luo, J.; Ladak, R.J.; Li, Q.; Wang, Y.; Zhang, C.; Wiebe, S.; Liu, A.C.H.; Ran, X.; Yang, J.; Naeli, P.; Garzia, A.; Zhou, L.; Mahmood, N.; Deng, Q.; Elaish, M.; Lin, R.; Mahal, L.K.; Hobman, T.C.; Pelletier, J.; Alain, T.; Vidal, S.M.; Duchaine, T.; Mazhab-Jafari, M.T.; Mao, X.; Jafarnejad, S.M.; Sonenberg, N. SARS-CoV-2 impairs interferon production via NSP2-induced repression of mRNA translation. Proc. Nat. Acad. Sci., U.S.A. 2022. doi: 10.1073/pnas.2204539119
  8. Qin, R.Meng, G.; Pushalkar, S.; Carlock, M.A.; Ross, T.; Vogel, C.; Mahal, L.K. Prevaccination glycan markers of response to an influenza vaccine implicate the complement pathway. Journal of Proteome Research, 2022. doi: 10.1021/acs.jproteome.2c00251. Formerly: medRxiv doi: 10.1101/2022.02.09.22270754
  9. Heindel, D.W.; Chen, S.; Aziz, P.V.; Chung, J.Y.; Marth, J.D.; Mahal, L.K. Glycomic analysis reveals a conserved response to bacterial sepsis induced by different bacterial pathogens. ACS Infectious Diseases, 2022. doi: 10.1021/acsinfecdis.2c00082. Formerly: bioRxiv doi: 10.1101/2020.12.11.421610
  10. Bui, D.T.; Jung, J.; Kitova, E.N.; Li, Z.; Willows, S.D.; Boddington, M.E.; Kitov, P.I.; Mason, A.L.; Capicciotti, C.J.; Mahal, L.K.; Macauley, M.S.; Klassen, J.S., Mass spectrometry-based shotgun glycomics using labeled glycan libraries, Analytical Chemistry, 2022, 94, 4997-5005. doi: 10.1021/acs.analchem.1c04779
  11. Bojar, D.; Meche, L.; Meng, G.; Eng, W.; Smith, D.F.; Cummings, R.D.; Mahal, L.K. A useful guide to lectin binding: Machine-learning directed annotation of 57 unique lectin specificities. ACS Chemical Biology, 2022. doi: 10.1021/acschembio.1c00689. Formerly: bioRxiv doi: 10.1101/2021.08.31.458439
  12. Walker, M.R.; Goel, H.L.; Mukhopadhyay, D.; Chhoy, P.; Karner, E.R.; Clark, J.L.; Liu, H., Li, R.; Zhu, J.L.; Chen, S.; Mahal, L.K., Bensing, B.A.; Mercurio, A.M. O-linked α2,3 sialylation confers stem cell properties in breast cancer. Science Advances, 2022, 8, eabj9513. doi: 10.1126/sciadv.abj9513
  13. Nguyen, L.; McCord, K.A.; Bui, D.T.; Bouwman, K.M.; Kitova, E.N.; Elaish, M.; Kumawat, D.; Daskhan, G.C.; Tomris, I.; Han, L.; Chopra, P.; Yang, T.-J.; Willows, S.D.; Mason, A.L.; Mahal, L.K.; Lowary, T.L.; West, L.J.; Hsu, S.-T.D.; Hobman, T., Tompkins, S.M.; Boons, G.-J.; de Vries, R.P.; Macauley, M.S.; Klassen, J.S. Sialic acid-dependent binding and viral entry of SARS-CoV-2. Nature Chemical Biology, 2022, 18, 81-90. doi: 10.1038/s41589-021-00924-1. Formerly: bioRxiv doi: 10.1101/2021.03.08.434228


  1. Li, Z.; Kitov, P.; Kitova, E.; Bui, D.; Moremen, K.; Wakarchuk, W.; Mahal, L.K.; Macauley, M.; Klassen, J. Quantifying CAZyme activity with glycoprotein substrates using ESI-MS and Center-of-Mass Monitoring (CoMMon). Analytical Chemistry, 202193, 15262-15270. doi: 10.1021/acs.analchem.1c02089
  2. Jung, J.; Enterina, J.R.; Bui, D.T.; Mozaneh, F.; Lin, P.-H.; Nitin; Kuo, C.-W.; Rodrigues, E.; Bhattacherjee, A.; Raeisimakiani, P.; Daskhan, G.C.; St. Laurent, C.D.; Khoo, K.-H.; Mahal, L.K.; Klassen, J.S.; Macauley, M.S. Carbohydrate sulfation as a mechanism for fine-tuning Siglec ligands. ACS Chemical Biology202116, 2673-2689. doi: 10.1021/acschembio.1c00501. Formerly: bioRxiv doi: 10.1101/2021.06.27.450109
  3. Chen, S.; Vurusaner, B.; Pena, S.; Chu, T.Mahal, L.K.; Fisher, E.; Canary, J. A two-photon, ratiometric, quantitative fluorescent probe reveals fluctuation of peroxynitrite regulated by arginase 1. Analytical Chemistry, 2021, 93, 10090-10098. doi: 10.1021/acs.analchem.1c00911
  4. Chu, T.T.; Chung, J.Y.; Dhawan, D.; Vaiana, C.A.Mahal, L.K. High-throughput miRFluR platform identifies miRNA regulating B3GLCT that predict Peters’ Plus Syndrome phenotype, supporting the miRNA proxy hypothesis. ACS Chemical Biology, 202116, 1900-1907. doi: 10.1021/acschembio.1c00247. Formerly: bioRxiv doi: 10.1101/2021.04.01.438139
  5. Kurz, E.; Chen, S.; Vucic, E.; Baptiste, G.; Loomis, C.; Agarwal, P.; Hajdu, C.; Bar-Sagi, D. ; Mahal, L.K.  Integrated systems-analysis of the murine and human pancreatic cancer glycomes reveals a tumor promoting role for ST6GAL1. Molecular and Cellular Proteomics, 2021, 20, 100160.  doi: 10.1016/j.mcpro.2021.100160. Formerly: bioRxiv doi: 10.1101/2021.03.10.434864
  6. Kumar, A.; Ishida, R.; Strilets, T.; Cole, J.; Lopez-Orozco, J.; Fayad, N.; Felix-Lopez, A.; Elaish, M.; Evseev, D.; Magor, K.; Mahal, L.K.; Nagata, L.; Evans, D.; Hobman, T.  SARS-CoV-2 non-structural protein 1 inhibits the interferon response by causing depletion of key host signaling factors. Journal of Virology, 2021, 95, 13, e0026621doi: 10.1128/jvi.00266-21
  7. Chen, S.; Qin, R.Mahal, L.K.  Technologies for glycomic analysis and their integration into systems biology. Critical Reviews in Biochemistry and Molecular Biology, 2021, 5, 1-20. doi: 10.1080/10409238.2021.1908953
  8. Noordwijk, K.J.; Qin, R.; Diaz-Rubio, M.E.; Zhang, S.; Su, J.; Mahal, L.K.; Reesink, H.L.  Metabolism and global protein glycosylation are differentially expressed in the healthy and osteoarthritic equine carpal synovial fluid. Equine Veterinary Journal2021, 54, 2, 323-333. doi: 10.1111/evj.13440
  9. Báez Bolivar, E; Bui, D.; Kitova, E.; Han, L.; Zheng, R.; Luber, E.; Sayed, S.; Mahal, L.K.; Klassen, J. Submicron emitters enable reliable quantification of weak protein-glycan interactions by ESI-MS.  Analytical Chemistry202193, 4231-4239. doi: 10.1021/acs.analchem.0c05003
  10. Song, W.-M.; Agrawal, P.; Von Itter, R.W.; Fontanals-Cirera, B.; Wang, M.; Zhou, X.; Mahal, L.K.; Hernando, E.; Zhang, B. Integration of multi-omics data identifies novel network models of primary tumor microenvironment and key regulators of melanoma. Nature Communications, 2021, 12, 1214. doi: 10.1038/s41467-021-21457-0
  11. Qin, R.Mahal, L.K. The host glycomic response to pathogens. Current Opinions in Structural Biology, 2021, 68, 149-156. doi: 10.1016/


  1. Bernard, I.; Limonta, D.; Mahal, L.K.; Hobman, T.C. Endothelium infection and dysregulation by SARS-CoV-2: Evidence and caveats in COVID-19. Viruses2020, 13, E29. doi: 10.3390/v13010029
  2. Kasper, D.M.; Hintzen, J.; Wu, Y.; Ghersi, J.J.; Mandl, H.K.; Salina, K.E.; Armero, W.; Hel, Z.; Sheng, Y.; Heindel, D.W.; Park, E.J.; Sessa, W.C.; Mahal, L.K.; Lebrilla, C.; Hirschi, K.K.; Nicoli, S. The N-glycome regulates the endothelial to hematopoietic transition. Science2020, 370, 1186-1191doi: 10.1126/science.aaz2121. Formerly bioRxiv doi: 10.1101/602912
  3. Chu, T.; Mahal, L.K. Sweet control: MicroRNA regulation of the glycome. Biochemistry202059, 3098-3110. doi: 10.1021/acs.biochem.9b00784
  4. De Leoz, M.L., et al. NIST interlaboratory study on glycosylation analysis of monoclonal antibodies: Comparison of results from diverse analytical methods. Molecular and Cellular Proteomics202019, 11-30. doi: 10.1074/mcp.RA119.001677
  5. Heindel, D.W.; Koppolu, S.; Zhang, Y.; Kasper, B.; Meche, L.; Vaiana, C.A.; Bissel, S.J.; Carter, C.E.; Kelvin, A.A.; Zhang, B.; Zhou, B.; TChou, T.-W.; Lashua, L.; Ross, T.M.; Ghedin, E.; Mahal, L.K. Glycomic analysis of host-response reveals high mannose as a key mediator of influenza severity. Proc. Nat. Acad. Sci. U.S.A., 2020117, 26926-26935. doi: 10.1073/pnas.2008203117. Formerly bioRxiv doi: 10.1101/2020.04.21.054098
  6. Chen, S.; Kasper, B.; Zhang, B.; Lashua, L.P.; Ross, T.M.; Ghedin, E.; Mahal, L.K. Age-dependent glycomic response to the 2009 pandemic H1N1 influenza virus and its association with disease severity. J. Proteome Research, 202019, 4486-4495. doi: 10.1021/acs.jproteome.0c00455. Formerly bioRxiv doi: 10.1101/2020.06.22.165613


  1. Bandini, G.; Leon D.R.; Hoppe, C.M.; Zhang, Y.; Agop-Nersesian, C.; Shears, M.J.; Mahal, L.K.; Routier, F.H.; Costello, C.E.; Samuelson, J. O-fucosylation of thrombospondin-like repeats is required for processing of microneme protein 2 and for efficient host cell invasion by Toxoplasma gondii tachyzoites. J. Biol. Chem, 2019, 294, 1967-1983. doi: 10.1074/jbc.ra118.005179. Formerly: bioRxiv doi: 10.1101/382515


  1. Wong, M.Y.; Chen, K.; Antonopoulos, A.; Kasper, B.T.; Dewal, M.B.; Taylor, R.J.; Whittaker, C.A.; Hein, P.P.; Dell, A.; Haslam, S.M. ; Mahal, L.K. ; Shoulders M.D. XBP1s activation can globally remodel N-glycan structure distribution patterns. Proc. Natl. Acad. Sci., USA, 2018, 115, E10089-E10098. doi: 10.1073/pnas.1805425115 Co-corresponding authors.
  2. Koppolu, S.; Wang, L.; Mathur, A.; Nigam, J.A.; Dezzutti, C.S.; Isaacs, C.; Meyn, L.; Bunge, K.E.; Moncla, B.J.; Hillier, S.L.; Rohan, L.C.; Mahal, L.K. Vaginal product formulation alters the innate anti-viral activity and glycome of cervicovaginal fluids with implications for viral susceptibility. ACS Infectious Disease, 2018, 4, 1613-1622. doi: 10.1021/acsinfecdis.8b00157
  3. Gaschler, M.M.; Andia, A.A.; Csuka, J.; Hurlocker, B.; Vaiana, C.A.; Zuckerman, D.S.; Liu, H.; Heindel, D.W.; Bos, P.H.; Reznik, E.; Ye, L.; Tyurina, Y.Y.; Lin, A.; Shchepinov, M.; Chan, A.Y.; Peguero-Periera, E.; Fomich, M.A.; Bekish, A.V.; Shmanai, V.V.; Kagan, V.E.; Mahal, L.K.; Stockwell, B. R.; Woerpel, K.A. FINO2 initiates ferroptosis through Gpx4 inactivation and iron oxidation. Nature Chemical Biology, 2018, 15, 507-515. doi: 10.1038/s41589-018-0031-6


  1. Agrawal, P; Fontanals-Cirera, B.; Sokolova, E.; Jacob, S.; Vaiana, C.A.; Argibay, D.; Davalos, V.; McDermott, M.; Nayak, S.; Darvishian, F.; Castillo, M.; Ueberheide, B.; Osman, I.; Fenyö, D.; Mahal, L.K. ; Hernando, E. ‡  A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell, 201731, 804-819. doi: 10.1016/j.ccell.2017.05.007 ‡ Co-corresponding authors
  2. Daley, D.; Mani, V.R; Mohan, N.; Akkad, N.; Ochi, A.; Lee, K.B.; Heindel, D.W.; Zambrinis, C.O.; Werba, G.; Barrilla, R.M.; Torres-Hernandez, A.; Nayak, S.; Wang, D.; Hundeyin, M.; Ismail, K.; Diskin, B.; Aykut, B.; Rodriguez, R.; Chang, S.; Gardner, L.; Mahal, L.K.; Ueberheide, B.; Miller, G. Dectin-1 activation on macrophages by Galectin-9 promotes pancreatic carcinoma and peritumoral immune-tolerance. Nature Medicine, 201723, 556-567. doi: 10.1038/nm.4314


  1. Neelamegham, S.; Mahal, L.K. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr. Opin. Struct. Biol., 201640, 145-152. doi: 10.1016/
  2. Ribeiro, J.P.; Pau, W.K.; Pifferi, C.; Renaudet, O; Varrot, A; Mahal, L.K. ; Imberty, A.  Characterization of a high-affinity sialic acid specific CBM40 from Clostridium perfringens and engineering of a divalent form. Biochem. J., 2016473, 2109-18doi: 10.1042/BCJ20160340 ‡ Co-corresponding authors
  3. Grant, O.C.; Tessier, M.B.; Meche, L.Mahal, L.K.; Foley, B.L.; Woods, R.J. Combining 3D structure with glycan array data provides insight into the origin of glycan specificity. Glycobiology, 201626, 772-83. doi: 10.1093/glycob/cww020
  4. Hoashi, M.; Meche, L.Mahal, L.K.; Bakacs, E.; Nardella, D.; Naftolin, F.; Bar-Yam, N.; Dominguez-Bello, M.G. Human milk bacterial and glycosylation patterns differ by delivery mode. Reproductive Sciences201623, 902-7. doi: 10.1177/1933719115623645
  5. Agre, P.; Bertozzi, C.; Bissell, M.; Campbell, K.; Cummings, R.; Desai, U.; Estes, M.; Flotte, T.; Fogleman, G.; Gage, F.; Ginsburg, D.; Gordon, J.; Hart, G.; Hascall, V.; Kiessling, L.; Kornfeld, S.; Lowe, J.; Magnani, J.; Mahal, L.K.; Medzhitov, R.; Roberts, R.; Sackstein, R.; Sarkar, R.; Schnaar, R.; Schwartz, N.; Varki, A.; Walt, D.; Weissman, I. Training the next generation of biomedical investigators in glycoscience. J. Clin. Invest., 2016126, 405-408. doi: 10.1172/jci85905
  6. Vaiana, C.A.; Kurcon, T.Mahal, L.K. MicroRNA-424 predicts a role for β-1,4 branched glycosylation in cell cycle progression. J. Biol. Chem., 2016291, 1529-37doi: 10.1074/jbc.m115.672220


  1. Kurcon, T.; Liu, Z.; Paradkar, A.V.; Vaiana, C.A.; Koppolu, S.; Agrawal, P.; Mahal, L.K. miRNA proxy approach reveals hidden functions of glycosylation. Proc. Natl. Acad. Sci., USA, 2015112, 7327-32. doi: 10.1073/pnas.1502076112
  2. Moncla, B.J.; Chappell, C.A.; Mahal, L.K.; Debo, B.M.; Meyn, L.A.; Hillier, S.L. Impact of bacterial vaginosis, as assessed by nugent criteria and hormonal status on glycosidases and lectin binding in cervicovaginal lavage samples. PLoS One201510, e0127091. doi: 10.1371/journal.pone.0127091
  3. Wang, L.; Koppolu, S.; Chappell, C.; Moncla, B.J.; Hillier, S.L.; Mahal, L.K. Studying the effects of reproductive hormones and bacterial vaginosis on the glycome of lavage samples from the cervicovaginal cavity. PLoS One201510, e0127021. doi: 10.1371/journal.pone.0127021
  4. Ng, S.; Lin, E; Kitov, P.I.; Tjhung, K.F.; Gerlits, O.O.; Deng, L.; Kasper, B.; Sood, A.; Paschal B.M.; Zhang, P.; Ling, C.C.; Klassen, J.S.; Noren, C.J.; Mahal, L.K., Woods, R.J.; Coates, L.; Derda, R. Genetically encoded fragment-based discovery of glycopeptide ligands for carbohydrate-binding proteins. J. Am. Chem. Soc.2015137, 5248-51. doi: 10.1021/ja511237n
  5. Bonzi, J.; Bornet, O.; Betzi, S.; Kasper, B.; Mahal, L.K.; Mancini, S.; Schiff, C.; Sebban-Krauzer, C.; Guerlesquin, F.; Elantak, L. Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions. Nature Communications2015, 6, 6194. doi: 10.1038/ncomms7194


  1. Liang, Y.; Eng, W.S.; Colquhoun, D.R.; Dinglasan, R.R.; Graham, D.R.; Mahal, L.K. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. J. Biol. Chem., 2014289, 32526-37. doi: 10.1074/jbc.M114.606269
  2. Wang, L.; Cummings, R.D.; Smith, D.F.; Huflejt, M.; Campbell, C.T.; Gildersleeve, J.D.; Gerlach, J.Q.; Kilcoyne, M.; Joshi, L.; Serna, S.; Reichardt, N.-C.; Pera, N.P.; Pieters, R.; Eng, W.S.; Mahal, L.K. Cross-platform comparison of glycan microarray formats. Glycobiology, 2014, 24, 507-517. doi: 10.1093/glycob/cwu019
  3. Agrawal, P.; Kurcon, T.; Pilobello, K.T.; Rakus, J.F.; Koppolu, S.; Liu, Z.; Batista, B.S.; Eng, W.S., Hsu, K.-L.; Liang, Y.Mahal, L.K. Mapping post-transcriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc. Natl. Acad. Sci., USA, 2014111, 4338-43. doi: 10.1073/pnas.1321524111
  4. Kasper, B.T.; Koppolu, S.Mahal, L.K. Insights into miRNA regulation of the human glycome. Biochem. Biophys. Res. Commun., 2014, 445, 774-9. doi: 10.1016/j.bbrc.2014.01.034


  1. Ribeiro, J.P.; Mahal, L.K. Dot by dot: Analyzing the glycome using lectin microarrays. Curr. Opin. Chem. Biol., 201317, 827-31. doi: 10.1016/j.cbpa.2013.06.009
  2. Pilobello, K.T.; Agrawal, P.; Rouse, R.; Mahal, L.K. Advances in lectin microarray technology: Optimized protocols for piezoelectric print conditions. Curr. Prot. Chem. Biol., 2013, 5, 1-23doi: 10.1002/9780470559277.ch120035


  1. Bird-Lieberman, E.L.; Neves, A.A.; Lao-Sirieix, P.; O’Donovan, M.; Novelli, M.; Lovat, L.B.; Eng, W.S.; Mahal, L.K.; Brindle, K.M.; Fitzgerald, R.C. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat. Medicine, 201218, 315-21. doi: 10.1038/nm.2616


  1. Reuel, N.F.; Ahn, J.-H.; Kim, J.-H.; Zhang, J.; Boghossian, A.A.; Mahal, L.K.; Strano, M.S. Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling. J. Am. Chem. Soc., 2011133, 17923-33doi: 10.1021/ja2074938
  2. Batista, B.S.; Eng, W.S.; Pilobello, K.T.; Hendricks-Muñoz, K.; Mahal, L.K. Identification of a conserved glycan signature for microvesicles. J. Proteome Res., 201110, 4624-33. doi: 10.1021/pr200434y
  3. Gaziel-Sovran, A; Segura, M.F.; Di Micco, R; Collins, M.K.; Hanniford, D.; Vega-Saenz de Miera, E.; Rakus, J.F.; Dankert, J.F.; Shang, S.; Kerbel, R.S.; Bhardwaju, N.; Yongzhao, S.; Darvishan, F.; Zavadil, J.; Erlebacher, A.; Mahal, L.K.; Osman, I.; Hernando, E. MiR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell, 201120, 104-18doi: 10.1016/j.ccr.2011.05.027
  4. Propheter, D.C.; Hsu, K.-L.Mahal, L.K. Recombinant lectin microarrays for glycomic analysis. Methods Mol. Biol. 2011723, 67-77. doi: 10.1007/978-1-61779-043-0_6
  5. Rakus, J.F.; Mahal, L.K. New technologies for glycomic analysis: Toward a systematic understanding of the glycome. Ann. Rev. Anal. Chem., 2011, 4, 367-92. doi: 10.1146/annurev-anchem-061010-113951
  6. Propheter, D.C.Mahal, L.K. Orientation of GST-tagged lectins via in situ surface modification to create an expanded lectin microarray for glycomic analysis. Mol. Biosystems, 20117, 2114-7. doi: 10.1039/c1mb05047h
  7. Krishnamoorthy, L.K.Mahal, L.K. Lectin microarrays: Simple tools for the analysis of complex glycans, chapter in Functional and structural proteomics of glycoproteins, eds. Owens, R.J; Nettleship, J.E., 2011, Springer Verlag. doi: 10.1007/978-90-481-9355-4_4
  8. Carillo, L.D.; Froemming, J.A.; Mahal, L.K. Targeted in vivo O-GlcNAc sensor reveals discrete compartment-specific dynamics during signal transduction. J. Biol. Chem., 2011, 286, 6650-6658. doi: 10.1074/jbc.M110.191627
  9. Hsu, K.-L.; Pilobello, K.; Krishnamoorthy, L.; Mahal, L.K. Ratiometric lectin microarray analysis of the mammalian cell surface glycome. Methods Mol. Biol., 2011671, 117-31. doi: 10.1007/978-1-59745-551-0_6


  1. Propheter, D.C.; Hsu, K.-L.Mahal, L.K. Fabrication of an oriented lectin microarray. ChemBioChem201011, 1203-1207. doi: 10.1002/cbic.201000106


  1. Krishnamoorthy L.Mahal L.K. Glycomic analysis: An array of technologies. ACS Chem Biol., 2009, 4, 715-732. doi: 10.1021/cb900103n
  2. Lebrilla C.B.; Mahal L.K. Post-translation modifications. Curr Opin Chem Biol., 2009, 13, 373-374. doi: 10.1016/j.cbpa.2009.08.002
  3. Hsu K.-L.; Mahal L.K. Sweet tasting chips: Microarray-based analysis of glycans. Curr Opin Chem Biol., 2009, 13, 427-432. doi: 10.1016/j.cbpa.2009.07.013
  4. Krishnamoorthy, L.; Bess, J.W.; Preston, A.B.; Nagashima, K.; Mahal, L.K. HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nature Chem. Biol., 2009 5, 244-250. doi: 10.1038/nchembio.151


  1. Hsu, K.-L.; Gildersleeve, J.C.; Mahal, L.K. A simple strategy for the creation of a recombinant lectin microarray. Mol. BioSystems20084, 654-662. doi: 10.1039/B800725J
  2. Mahal, L.K. Glycomics: Towards bioinformatic approaches to understanding glycosylation. Anti-Cancer Agents Med. Chem., 20088, 37-51. doi: 10.2174/187152008783330806
  3. Pilobello, K.T.Mahal, L.K. Lectin microarrays for glycoprotein analysis. Methods Mol. Biol.2008385, 193-203. doi: 10.1007/978-1-59745-426-1_14


  1. Pilobello, K.T.; Slawek, D.; Mahal, L.K. A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc. Natl. Acad. Sci., USA, 2007104, 10534-10539. doi: 10.1073/pnas.0704954104
  2. Pilobello, K.T.Mahal, L.K. Deciphering the glycocode: The complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol.2007, 11, 300-305. doi: 10.1016/j.cbpa.2007.05.002


  1. Carrillo, L.D.; Krishnamoorthy, L.Mahal, L.K. A cellular FRET sensor for β-O-GlcNAc, a aynamic carbohydrate modification involved in signaling. J. Am. Chem. Soc., 2006, 128, 14768-14769. doi: 10.1021/ja065835+
  2. Hsu, K.-L.Mahal, L. K. Profiling the sweet structures of the bacterial glycome. Nature Protocols20061, 543-549. doi: 10.1016/j.cbpa.2009.07.013
  3. Sanki, A.; Mahal, L.K. A one-step synthesis of azide-tagged carbohydrates: Versatile intermediates for glycotechnology. Synlett, 20063, 455-459. doi: 10.1055/s-2006-926264
  4. Hsu, K.-L.; Pilobello, K.T.; Mahal, L.K. Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nature Chem. Biol., 20062, 153-157. doi: 10.1038/nchembio767


  1. Pilobello, K.T.; Krishnamoorthy, L.; Slawek, D.; Mahal, L.K. Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem, 2005, 6, 985-989. doi: 10.1002/cbic.200400403


  1. Mahal, L.K. Catching bacteria with sugar. Chem. & Biol.200411, 1602-1604. doi: 10.1016/j.chembiol.2004.11.017

Postdoctoral Work

(with Prof. James E. Rothman, Sloan-Kettering Institute)

  1. Melia, T.J.; Weber, T.; McNew, J.A.; Fisher, L.E.; Johnston, R.J.; Parlati, F.; Mahal, L.K.; Söllner, T.H.; Rothman, J. E. Regulation of membrane fusion by conformational switching of  the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol., 2002, 158, 929-9. doi: 10.1083/jcb.200112081
  2. Mahal, L.K.; Sequeira, S.M.; Gureasko, J.M.; Söllner, T.H. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J. Cell Biol., 2002158, 273-282. doi: 10.1083/jcb.200203135

Graduate Work

(with Prof. Carolyn Bertozzi, U.C. Berkeley)

  1. Charter, N.W.; Mahal, L.K.; Koshland, D.E., Jr.; Bertozzi, C.R. Differential effects of unnatural sialic acids on the polysialylation of neuronal cell adhesion molecule and neuronal behaviour. J. Biol. Chem., 2002277, 9255-9261. doi: 10.1074/jbc.M111619200
  2. Mahal, L.K.; Charter, N.W.; Angata, K.; Fukuda, M.; Koshland, D.E., Jr.; Bertozzi, C.R. A small molecule modulator of poly-a-2,8-aialic acid expression on neurons and tumor cells. Science, 2001294, 380-381. doi: 10.1126/science.1062192
  3. Groves, J.T.; Mahal, L.K.; Bertozzi, C.R. Control of cell adhesion and growth with micropatterned supported lipid membranes. Langmuir, 200117, 5129-5233. doi: 10.1021/la010481f
  4. Jacobs, C.L.; Yarema, K.J.; Mahal, L.K.; Nauman, D.A.; Charter, N.W.; Bertozzi, C.R. Metabolic labeling of glycoproteins with chemical tags through unnatural sialic acid biosynthesis. Methods Enzymol., 2000327, 260-275. doi: 10.1016/S0076-6879(00)27282-0
  5. Charter, N.W.*; Mahal, L.K.*; Koshland, D.E., Jr.; Bertozzi, C.R. Biosynthetic incorporation of    unnatural sialic acids into polysialic acid on neural cells. Glycobiology, 200010, 1049-1056. doi: 10.1093/glycob/10.10.1049 * Co-first author
  6. Lee, J.H.; Baker, T.F.; Mahal, L.K.; Zabner, J.; Bertozzi, C.R.; Weimer, D. F.; Welsh, M. J.  Engineering novel cell surface receptors for virus-mediated gene transfer. J. Biol. Chem., 1999274, 21878-84. doi: 10.1074/jbc.274.31.21878
  7. Yarema, K.J.; Mahal, L.K.; Bruehl, R.E.; Bertozzi, C.R. Metabolic delivery of ketone groups to sialic acid residues. Application to cell surface glycoform engineering. J. Biol. Chem., 1998273, 31168-79. doi: 10.1074/jbc.273.47.31168
  8. Mahal, L.K.; Bertozzi, C.R. Engineered cell surfaces: Fertile ground for molecular landscaping. Chemistry & Biology, 19974, 415-22. doi: 10.1016/S1074-5521(97)90193-9
  9. Mahal, L.K.; Yarema, K.J.; Bertozzi, C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science, 1997276, 1125-1128. doi: 10.1126/science.276.5315.1125

Undergraduate Work

(with Prof. Rebecca Braslau, U.C. Santa Cruz)

  1. Braslau, R.; Burrill, L.C.; Siano, M.; Naik, N.; Howden, R.K.; Mahal, L.K. Low-temperature preparations of unimolecular nitroxide initiators for “living” free radical polymerizations. Macromolecules, 199730, 6445-6450. doi: 10.1021/ma970822p
  2. Braslau, R.; Burrill, L.C.;  Mahal, L.K.; Wedeking, T. A totally radical approach to the control of stereochemistry: Coupling of prochiral radicals with chiral nitroxyl radicals. Angewandte Chemie, 199736, 237-238. doi: 10.1002/anie.199702371

Sort by Year

Get in Touch


What is the Canada Excellence Research Chair?

The Canada Excellence Research Chairs (CERC) Program awards universities up to $10 million over seven years to support world‑renowned researchers and their teams to establish ambitious research programs at Canadian universities.

Where is the University of Alberta?

Located in beautiful Edmonton, Alberta, Canada, the Chemistry Department at the UofA is renown for its active research. It is one of the best equipped and well funded departments in Canada.

What is lectin microarray technology?

It is a glycomic technology developed in the Mahal Lab, provide a rapid analysis of the glycome (1-3). These microarrays utilize immobilized carbohydrate-binding proteins at high spatial density to give specific information on the repertoire of glycans present.

Why study microRNA regulation of glycosylation?

miRNA can be used to identify glycosylation enzymes and their corresponding glycans that drive disease states.

How do I apply for grad school?

At the UofA, you do not have to find a supervisor in order to apply. The department has a process in place for students to find a supervisor and join a research group once they arrive to start their program. However, it is recommended for applicants to contact chemistry faculty members whose areas of research are of interest to you. Information about requirements and how to apply can be found here.

Send Us a Message

Scroll to Top