Featured Publications

The Mahal Lab continues to make major contributions to the field of glycomics. Below are a selection of recent publications.

Prevaccination glycan markers of response to an influenza vaccine implicate the complement pathway
Read More →
Glycomic analysis reveals a conserved response to bacterial sepsis induced by different bacterial pathogens
Read More →
A useful guide to lectin binding: Machine-learning directed annotation of 57 unique lectin specificities
Read More →
High-throughput miRFluR platform identifies miRNA regulating B3GLCT that predict Peters’ Plus Syndrome phenotype, supporting the miRNA proxy hypothesis
Read More →
Integrated systems-analysis of the murine and human pancreatic cancer glycomes reveals a tumor promoting role for ST6GAL1
Read More →
Glycomic analysis of host-response reveals high mannose as a key mediator of influenza severity
Read More →

Publications by Year

Preprints (in submission/review)

  1. Qin, R.; Mahal, L.K.; Bojar, D. Deep learning explains the biology of branched glycans from single-cell sequencing data. bioRixv, 2022. doi: 10.1101/2022.06.27.497708
  2. Qin, R.; Kurz, E.; Chen, S.; Zeck, B.; Chiribogas, L.; Jackson, D.; Herchen, A.; Attia, T.; Carlock, M.; Rapkiewicz, A.; Bar-Sagi, D.; Ritchie, B.; Ross, T.M.; Mahal, L.K. α2,6-sialylation is upregulated in severe COVID-19 implicating the complement cascade. bioRixv, 2022. doi: 10.1101/2022.06.06.22275981
  3. Jame-Chenarboo, F.; Ng, H.H.; Macdonald, D.; Mahal, L.K. miRNA upregulate protein and glycan expression via direct activation in proliferating cells. bioRixv, 2022. doi: 10.1101/2022.04.01.486772
  4. Koussa, J.; Vitrinel, B.; Whitney, P.; Kasper, B.; Mahal, L.K.; Vogel, C.; Iustigman, S.; Salehi-Ashtiani, K.; Ghedin, E.  Sex-specific glycosylation of secreted immunomodulatory proteins in the filarial nematode Brugia malayi. bioRixv, 2021, doi: 10.1101/2021.02.24.432741‌
  5. Wang, C.; Honce, R.; Salvatore, M.; Yang, J.; Twells, N.M.; Mahal, L.K.; Schultz-Cherry, S.; Ghedin, E. Reduced inflammatory response and promoted multiciliated cell differentiation in mice protected by defective interfering influenza virus. bioRixv2022. doi: 10.1101/2022.01.25.477719. In submission.

2022

  1. Xu, Z.; Choi, J.; Dai, D.L.; Luo, J.; Ladak, R.J.; Li, Q.; Wang, Y.; Zhang, C.; Wiebe, S.; Liu, A.C.H.; Ran, X.; Yang, J.; Naeli, P.; Garzia, A.; Zhou, L.; Mahmood, N.; Deng, Q.; Elaish, M.; Lin, R.; Mahal, L.K.; Hobman, T.C.; Pelletier, J.; Alain, T.; Vidal, S.M.; Duchaine, T.; Mazhab-Jafari, M.T.; Mao, X.; Jafarnejad, S.M.; Sonenberg, N. SARS-CoV-2 impairs interferon production via NSP2-induced repression of mRNA translation. Proc. Nat. Acad. Sci., U.S.A. 2022. doi: 10.1073/pnas.2204539119
  2. Qin, R.Meng, G.; Pushalkar, S.; Carlock, M.A.; Ross, T.; Vogel, C.; Mahal, L.K. Prevaccination glycan markers of response to an influenza vaccine implicate the complement pathway. Journal of Proteome Research, 2022. doi: 10.1021/acs.jproteome.2c00251. Formerly doi: 10.1101/2022.02.09.22270754
  3. Heindel, D.W.; Chen, S.; Aziz, P.V.; Chung, J.Y.; Marth, J.D.; Mahal, L.K. Glycomic analysis reveals a conserved response to bacterial sepsis induced by different bacterial pathogens. ACS Infectious Diseases, 2022. doi: 10.1021/acsinfecdis.2c00082. Formerly doi: 10.1101/2020.12.11.421610
  4. Bui, D.T.; Jung, J.; Kitova, E.N.; Li, Z.; Willows, S.D.; Boddington, M.E.; Kitov, P.I.; Mason, A.L.; Capicciotti, C.J.; Mahal, L.K.; Macauley, M.S.; Klassen, J.S., Mass spectrometry-based shotgun glycomics using labeled glycan libraries, Analytical Chemistry, 2022, 94, 4997-5005. doi: 10.1021/acs.analchem.1c04779
  5. Bojar, D.; Meche, L.; Meng, G.; Eng, W.; Smith, D.F.; Cummings, R.D.; Mahal, L.K. A useful guide to lectin binding: Machine-learning directed annotation of 57 unique lectin specificities. ACS Chemical Biology, 2022. doi: 10.1021/acschembio.1c00689. Formerly doi: 10.1101/2021.08.31.458439
  6. Walker, M.R.; Goel, H.L.; Mukhopadhyay, D.; Chhoy, P.; Karner, E.R.; Clark, J.L.; Liu, H., Li, R.; Zhu, J.L.; Chen, S.; Mahal, L.K., Bensing, B.A.; Mercurio, A.M. O-linked α2,3 sialylation confers stem cell properties in breast cancer. Science Advances, 2022, 8, eabj9513. doi: 10.1126/sciadv.abj9513
  7. Nguyen, L.; McCord, K.A.; Bui, D.T.; Bouwman, K.M.; Kitova, E.N.; Elaish, M.; Kumawat, D.; Daskhan, G.C.; Tomris, I.; Han, L.; Chopra, P.; Yang, T.-J.; Willows, S.D.; Mason, A.L.; Mahal, L.K.; Lowary, T.L.; West, L.J.; Hsu, S.-T.D.; Hobman, T., Tompkins, S.M.; Boons, G.-J.; de Vries, R.P.; Macauley, M.S.; Klassen, J.S. Sialic acid-dependent binding and viral entry of SARS-CoV-2. Nature Chemical Biology, 2022, 18, 81-90. doi: 10.1038/s41589-021-00924-1. Formerly doi: 10.1101/2021.03.08.434228

2021

  1. Li, Z.; Kitov, P.; Kitova, E.; Bui, D.; Moremen, K.; Wakarchuk, W.; Mahal, L.K.; Macauley, M.; Klassen, J. Quantifying CAZyme activity with glycoprotein substrates using ESI-MS and Center-of-Mass Monitoring (CoMMon). Analytical Chemistry, 202193, 15262-15270. doi: 10.1021/acs.analchem.1c02089
  2. Jung, J.; Enterina, J.R.; Bui, D.T.; Mozaneh, F.; Lin, P.-H.; Nitin; Kuo, C.-W.; Rodrigues, E.; Bhattacherjee, A.; Raeisimakiani, P.; Daskhan, G.C.; St. Laurent, C.D.; Khoo, K.-H.; Mahal, L.K.; Klassen, J.S.; Macauley, M.S. Carbohydrate sulfation as a mechanism for fine-tuning Siglec ligands. ACS Chemical Biology202116, 2673-2689. doi: 10.1021/acschembio.1c00501. Formerly doi: 10.1101/2021.06.27.450109
  3. Chen, S.; Vurusaner, B.; Pena, S.; Chu, T.Mahal, L.K.; Fisher, E.; Canary, J. A two-photon, ratiometric, quantitative fluorescent probe reveals fluctuation of peroxynitrite regulated by arginase 1. Analytical Chemistry, 2021, 93, 10090-10098. doi: 10.1021/acs.analchem.1c00911
  4. Chu, T.T.; Chung, J.Y.; Dhawan, D.; Vaiana, C.A.Mahal, L.K. High-throughput miRFluR platform identifies miRNA regulating B3GLCT that predict Peters’ Plus Syndrome phenotype, supporting the miRNA proxy hypothesis. ACS Chemical Biology, 202116, 1900-1907. doi: 10.1021/acschembio.1c00247. Formerly doi: 10.1101/2021.04.01.438139
  5. Kurz, E.; Chen, S.; Vucic, E.; Baptiste, G.; Loomis, C.; Agarwal, P.; Hajdu, C.; Bar-Sagi, D. ; Mahal, L.K.  Integrated systems-analysis of the murine and human pancreatic cancer glycomes reveals a tumor promoting role for ST6GAL1. Molecular and Cellular Proteomics, 2021, 20, 100160.  doi: 10.1016/j.mcpro.2021.100160. Formerly doi: 10.1101/2021.03.10.434864
  6. Kumar, A.; Ishida, R.; Strilets, T.; Cole, J.; Lopez-Orozco, J.; Fayad, N.; Felix-Lopez, A.; Elaish, M.; Evseev, D.; Magor, K.; Mahal, L.K.; Nagata, L.; Evans, D.; Hobman, T.  SARS-CoV-2 non-structural protein 1 inhibits the interferon response by causing depletion of key host signaling factors. Journal of Virology, 2021, 95, 13, e0026621doi: 10.1128/jvi.00266-21
  7. Chen, S.; Qin, R.Mahal, L.K.  Technologies for glycomic analysis and their integration into systems biology. Critical Reviews in Biochemistry and Molecular Biology, 2021, 5, 1-20. doi: 10.1080/10409238.2021.1908953
  8. Noordwijk, K.J.; Qin, R.; Diaz-Rubio, M.E.; Zhang, S.; Su, J.; Mahal, L.K.; Reesink, H.L.  Metabolism and global protein glycosylation are differentially expressed in the healthy and osteoarthritic equine carpal synovial fluid. Equine Veterinary Journal2021, 54, 2, 323-333doi: 10.1111/evj.13440
  9. Báez Bolivar, E; Bui, D.; Kitova, E.; Han, L.; Zheng, R.; Luber, E.; Sayed, S.; Mahal, L.K.; Klassen, J. Submicron emitters enable reliable quantification of weak protein-glycan interactions by ESI-MS.  Analytical Chemistry202193, 4231-4239. doi: 10.1021/acs.analchem.0c05003
  10. Song, W.-M.; Agrawal, P.; Von Itter, R.W.; Fontanals-Cirera, B.; Wang, M.; Zhou, X.; Mahal, L.K.; Hernando, E.; Zhang, B. Integration of multi-omics data identifies novel network models of primary tumor microenvironment and key regulators of melanoma. Nature Communications, 2021, 12, 1214. doi: 10.1038/s41467-021-21457-0
  11. Qin, R.Mahal, L.K. The host glycomic response to pathogens. Current Opinions in Structural Biology, 2021, 68, 149-156. doi: 10.1016/j.sbi.2020.12.011

2020

  1. Bernard, I.; Limonta, D.; Mahal, L.K.; Hobman, T.C. Endothelium infection and dysregulation by SARS-CoV-2: Evidence and caveats in COVID-19. Viruses2020, 13, E29. doi: 10.3390/v13010029
  2. Kasper, D.M.; Hintzen, J.; Wu, Y.; Ghersi, J.J.; Mandl, H.K.; Salina, K.E.; Armero, W.; Hel, Z.; Sheng, Y.; Heindel, D.W.; Park, E.J.; Sessa, W.C.; Mahal, L.K.; Lebrilla, C.; Hirschi, K.K.; Nicoli, S. The N-glycome regulates the endothelial to hematopoietic transition. Science2020, 370, 1186-1191doi: 10.1126/science.aaz2121. Formerly doi: 10.1101/602912
  3. Chu, T.; Mahal, L.K. Sweet control: MicroRNA regulation of the glycome. Biochemistry202059, 3098-3110. doi: 10.1021/acs.biochem.9b00784
  4. De Leoz, M.L., et al. NIST interlaboratory study on glycosylation analysis of monoclonal antibodies: Comparison of results from diverse analytical methods. Molecular and Cellular Proteomics202019, 11-30. doi: 10.1074/mcp.RA119.001677
  5. Heindel, D.W.; Koppolu, S.; Zhang, Y.; Kasper, B.; Meche, L.; Vaiana, C.A.; Bissel, S.J.; Carter, C.E.; Kelvin, A.A.; Zhang, B.; Zhou, B.; TChou, T.-W.; Lashua, L.; Ross, T.M.; Ghedin, E.; Mahal, L.K. Glycomic analysis of host-response reveals high mannose as a key mediator of influenza severity. Proc. Nat. Acad. Sci. U.S.A., 2020117, 26926-26935. doi: 10.1073/pnas.2008203117. Formerly doi: 10.1101/2020.04.21.054098
  6. Chen, S.; Kasper, B.; Zhang, B.; Lashua, L.P.; Ross, T.M.; Ghedin, E.; Mahal, L.K. Age-dependent glycomic response to the 2009 pandemic H1N1 influenza virus and its association with disease severity. J. Proteome Research, 202019, 4486-4495. doi: 10.1021/acs.jproteome.0c00455. Formerly doi: 10.1101/2020.06.22.165613

2019

  1. Bandini, G.; Leon D.R.; Hoppe, C.M.; Zhang, Y.; Agop-Nersesian, C.; Shears, M.J.; Mahal, L.K.; Routier, F.H.; Costello, C.E.; Samuelson, J. O-fucosylation of thrombospondin-like repeats is required for processing of microneme protein 2 and for efficient host cell invasion by Toxoplasma gondii tachyzoites. J. Biol. Chem, 2019, 294, 1967-1983. doi: 10.1074/jbc.ra118.005179. Formerly doi: 10.1101/382515

2018

  1. Wong, M.Y.; Chen, K.; Antonopoulos, A.; Kasper, B.T.; Dewal, M.B.; Taylor, R.J.; Whittaker, C.A.; Hein, P.P.; Dell, A.; Haslam, S.M. ; Mahal, L.K. ; Shoulders M.D. XBP1s activation can globally remodel N-glycan structure distribution patterns. Proc. Natl. Acad. Sci., USA, 2018, 115, E10089-E10098. doi: 10.1073/pnas.1805425115 Co-corresponding authors.
  2. Koppolu, S.; Wang, L.; Mathur, A.; Nigam, J.A.; Dezzutti, C.S.; Isaacs, C.; Meyn, L.; Bunge, K.E.; Moncla, B.J.; Hillier, S.L.; Rohan, L.C.; Mahal, L.K. Vaginal product formulation alters the innate anti-viral activity and glycome of cervicovaginal fluids with implications for viral susceptibility. ACS Infectious Disease, 2018, 4, 1613-1622. doi: 10.1021/acsinfecdis.8b00157
  3. Gaschler, M.M.; Andia, A.A.; Csuka, J.; Hurlocker, B.; Vaiana, C.A.; Zuckerman, D.S.; Liu, H.; Heindel, D.W.; Bos, P.H.; Reznik, E.; Ye, L.; Tyurina, Y.Y.; Lin, A.; Shchepinov, M.; Chan, A.Y.; Peguero-Periera, E.; Fomich, M.A.; Bekish, A.V.; Shmanai, V.V.; Kagan, V.E.; Mahal, L.K.; Stockwell, B. R.; Woerpel, K.A. FINO2 initiates ferroptosis through Gpx4 inactivation and iron oxidation. Nature Chemical Biology, 2018, 15, 507-515. doi: 10.1038/s41589-018-0031-6

2017

  1. Agrawal, P; Fontanals-Cirera, B.; Sokolova, E.; Jacob, S.; Vaiana, C.A.; Argibay, D.; Davalos, V.; McDermott, M.; Nayak, S.; Darvishian, F.; Castillo, M.; Ueberheide, B.; Osman, I.; Fenyö, D.; Mahal, L.K. ; Hernando, E. ‡  A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell, 201731, 804-819. doi: 10.1016/j.ccell.2017.05.007 ‡ Co-corresponding authors
  2. Daley, D.; Mani, V.R; Mohan, N.; Akkad, N.; Ochi, A.; Lee, K.B.; Heindel, D.W.; Zambrinis, C.O.; Werba, G.; Barrilla, R.M.; Torres-Hernandez, A.; Nayak, S.; Wang, D.; Hundeyin, M.; Ismail, K.; Diskin, B.; Aykut, B.; Rodriguez, R.; Chang, S.; Gardner, L.; Mahal, L.K.; Ueberheide, B.; Miller, G. Dectin-1 activation on macrophages by Galectin-9 promotes pancreatic carcinoma and peritumoral immune-tolerance. Nature Medicine, 201723, 556-567. doi: 10.1038/nm.4314

2016

  1. Neelamegham, S.; Mahal, L.K. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr. Opin. Struct. Biol., 201640, 145-152. doi: 10.1016/j.sbi.2016.09.013
  2. Ribeiro, J.P.; Pau, W.K.; Pifferi, C.; Renaudet, O; Varrot, A; Mahal, L.K. ; Imberty, A.  Characterization of a high-affinity sialic acid specific CBM40 from Clostridium perfringens and engineering of a divalent form. Biochem. J., 2016473, 2109-18doi: 10.1042/BCJ20160340 ‡ Co-corresponding authors
  3. Grant, O.C.; Tessier, M.B.; Meche, L.Mahal, L.K.; Foley, B.L.; Woods, R.J. Combining 3D structure with glycan array data provides insight into the origin of glycan specificity. Glycobiology, 201626, 772-83. doi: 10.1093/glycob/cww020
  4. Hoashi, M.; Meche, L.Mahal, L.K.; Bakacs, E.; Nardella, D.; Naftolin, F.; Bar-Yam, N.; Dominguez-Bello, M.G. Human milk bacterial and glycosylation patterns differ by delivery mode. Reproductive Sciences201623, 902-7. doi: 10.1177/1933719115623645
  5. Agre, P.; Bertozzi, C.; Bissell, M.; Campbell, K.; Cummings, R.; Desai, U.; Estes, M.; Flotte, T.; Fogleman, G.; Gage, F.; Ginsburg, D.; Gordon, J.; Hart, G.; Hascall, V.; Kiessling, L.; Kornfeld, S.; Lowe, J.; Magnani, J.; Mahal, L.K.; Medzhitov, R.; Roberts, R.; Sackstein, R.; Sarkar, R.; Schnaar, R.; Schwartz, N.; Varki, A.; Walt, D.; Weissman, I. Training the next generation of biomedical investigators in glycoscience. J. Clin. Invest., 2016126, 405-408. doi: 10.1172/jci85905
  6. Vaiana, C.A.; Kurcon, T.Mahal, L.K. MicroRNA-424 predicts a role for β-1,4 branched glycosylation in cell cycle progression. J. Biol. Chem., 2016291, 1529-37doi: 10.1074/jbc.m115.672220

2015

  1. Kurcon, T.; Liu, Z.; Paradkar, A.V.; Vaiana, C.A.; Koppolu, S.; Agrawal, P.; Mahal, L.K. miRNA proxy approach reveals hidden functions of glycosylation. Proc. Natl. Acad. Sci., USA, 2015112, 7327-32. doi: 10.1073/pnas.1502076112
  2. Moncla, B.J.; Chappell, C.A.; Mahal, L.K.; Debo, B.M.; Meyn, L.A.; Hillier, S.L. Impact of bacterial vaginosis, as assessed by nugent criteria and hormonal status on glycosidases and lectin binding in cervicovaginal lavage samples. PLoS One201510, e0127091. doi: 10.1371/journal.pone.0127091
  3. Wang, L.; Koppolu, S.; Chappell, C.; Moncla, B.J.; Hillier, S.L.; Mahal, L.K. Studying the effects of reproductive hormones and bacterial vaginosis on the glycome of lavage samples from the cervicovaginal cavity. PLoS One201510, e0127021. doi: 10.1371/journal.pone.0127021
  4. Ng, S.; Lin, E; Kitov, P.I.; Tjhung, K.F.; Gerlits, O.O.; Deng, L.; Kasper, B.; Sood, A.; Paschal B.M.; Zhang, P.; Ling, C.C.; Klassen, J.S.; Noren, C.J.; Mahal, L.K., Woods, R.J.; Coates, L.; Derda, R. Genetically encoded fragment-based discovery of glycopeptide ligands for carbohydrate-binding proteins. J. Am. Chem. Soc.2015137, 5248-51. doi: 10.1021/ja511237n
  5. Bonzi, J.; Bornet, O.; Betzi, S.; Kasper, B.; Mahal, L.K.; Mancini, S.; Schiff, C.; Sebban-Krauzer, C.; Guerlesquin, F.; Elantak, L. Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions. Nature Communications2015, 6, 6194. doi: 10.1038/ncomms7194

2014

  1. Liang, Y.; Eng, W.S.; Colquhoun, D.R.; Dinglasan, R.R.; Graham, D.R.; Mahal, L.K. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. J. Biol. Chem., 2014289, 32526-37. doi: 10.1074/jbc.M114.606269
  2. Wang, L.; Cummings, R.D.; Smith, D.F.; Huflejt, M.; Campbell, C.T.; Gildersleeve, J.D.; Gerlach, J.Q.; Kilcoyne, M.; Joshi, L.; Serna, S.; Reichardt, N.-C.; Pera, N.P.; Pieters, R.; Eng, W.S.; Mahal, L.K. Cross-platform comparison of glycan microarray formats. Glycobiology, 2014, 24, 507-517. doi: 10.1093/glycob/cwu019
  3. Agrawal, P.; Kurcon, T.; Pilobello, K.T.; Rakus, J.F.; Koppolu, S.; Liu, Z.; Batista, B.S.; Eng, W.S., Hsu, K.-L.; Liang, Y.Mahal, L.K. Mapping post-transcriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc. Natl. Acad. Sci., USA, 2014111, 4338-43. doi: 10.1073/pnas.1321524111
  4. Kasper, B.T.; Koppolu, S.Mahal, L.K. Insights into miRNA regulation of the human glycome. Biochem. Biophys. Res. Commun., 2014, 445, 774-9. doi: 10.1016/j.bbrc.2014.01.034

2013

  1. Ribeiro, J.P.; Mahal, L.K. Dot by dot: Analyzing the glycome using lectin microarrays. Curr. Opin. Chem. Biol., 201317, 827-31. doi: 10.1016/j.cbpa.2013.06.009
  2. Pilobello, K.T.; Agrawal, P.; Rouse, R.; Mahal, L.K. Advances in lectin microarray technology: Optimized protocols for piezoelectric print conditions. Curr. Prot. Chem. Biol., 2013, 5, 1-23doi: 10.1002/9780470559277.ch120035

2012

  1. Bird-Lieberman, E.L.; Neves, A.A.; Lao-Sirieix, P.; O’Donovan, M.; Novelli, M.; Lovat, L.B.; Eng, W.S.; Mahal, L.K.; Brindle, K.M.; Fitzgerald, R.C. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat. Medicine, 201218, 315-21. doi: 10.1038/nm.2616

2011

  1. Reuel, N.F.; Ahn, J.-H.; Kim, J.-H.; Zhang, J.; Boghossian, A.A.; Mahal, L.K.; Strano, M.S. Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling. J. Am. Chem. Soc., 2011133, 17923-33doi: 10.1021/ja2074938
  2. Batista, B.S.; Eng, W.S.; Pilobello, K.T.; Hendricks-Muñoz, K.; Mahal, L.K. Identification of a conserved glycan signature for microvesicles. J. Proteome Res., 201110, 4624-33. doi: 10.1021/pr200434y
  3. Gaziel-Sovran, A; Segura, M.F.; Di Micco, R; Collins, M.K.; Hanniford, D.; Vega-Saenz de Miera, E.; Rakus, J.F.; Dankert, J.F.; Shang, S.; Kerbel, R.S.; Bhardwaju, N.; Yongzhao, S.; Darvishan, F.; Zavadil, J.; Erlebacher, A.; Mahal, L.K.; Osman, I.; Hernando, E. MiR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell, 201120, 104-18doi: 10.1016/j.ccr.2011.05.027
  4. Propheter, D.C.; Hsu, K.-L.Mahal, L.K. Recombinant lectin microarrays for glycomic analysis. Methods Mol. Biol. 2011723, 67-77. doi: 10.1007/978-1-61779-043-0_6
  5. Rakus, J.F.; Mahal, L.K. New technologies for glycomic analysis: Toward a systematic understanding of the glycome. Ann. Rev. Anal. Chem., 2011, 4, 367-92doi: 10.1146/annurev-anchem-061010-113951
  6. Propheter, D.C.Mahal, L.K. Orientation of GST-tagged lectins via in situ surface modification to create an expanded lectin microarray for glycomic analysis. Mol. Biosystems, 20117, 2114-7. doi: 10.1039/c1mb05047h
  7. Krishnamoorthy, L.K.Mahal, L.K. Lectin microarrays: Simple tools for the analysis of complex glycans, chapter in Functional and structural proteomics of glycoproteins, eds. Owens, R.J; Nettleship, J.E., 2011, Springer Verlag. doi: 10.1007/978-90-481-9355-4_4
  8. Carillo, L.D.; Froemming, J.A.; Mahal, L.K. Targeted in vivo O-GlcNAc sensor reveals discrete compartment-specific dynamics during signal transduction. J. Biol. Chem., 2011, 286, 6650-6658. doi: 10.1074/jbc.M110.191627
  9. Hsu, K.-L.; Pilobello, K.; Krishnamoorthy, L.; Mahal, L.K. Ratiometric lectin microarray analysis of the mammalian cell surface glycome. Methods Mol. Biol., 2011671, 117-31. doi: 10.1007/978-1-59745-551-0_6

2010

  1. Propheter, D.C.; Hsu, K.-L.Mahal, L.K. Fabrication of an oriented lectin microarray. ChemBioChem201011, 1203-1207. doi: 10.1002/cbic.201000106

2009

  1. Krishnamoorthy L.Mahal L.K. Glycomic analysis: An array of technologies. ACS Chem Biol., 2009, 4, 715-732. doi: 10.1021/cb900103n
  2. Lebrilla C.B.; Mahal L.K. Post-translation modifications. Curr Opin Chem Biol., 2009, 13, 373-374. doi: 10.1016/j.cbpa.2009.08.002
  3. Hsu K.-L.; Mahal L.K. Sweet tasting chips: Microarray-based analysis of glycans. Curr Opin Chem Biol., 2009, 13, 427-432. doi: 10.1016/j.cbpa.2009.07.013
  4. Krishnamoorthy, L.; Bess, J.W.; Preston, A.B.; Nagashima, K.; Mahal, L.K. HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nature Chem. Biol., 2009 5, 244-250. doi: 10.1038/nchembio.151

2008

  1. Hsu, K.-L.; Gildersleeve, J.C.; Mahal, L.K. A simple strategy for the creation of a recombinant lectin microarray. Mol. BioSystems20084, 654-662. doi: 10.1039/B800725J
  2. Mahal, L.K. Glycomics: Towards bioinformatic approaches to understanding glycosylation. Anti-Cancer Agents Med. Chem., 20088, 37-51. doi: 10.2174/187152008783330806
  3. Pilobello, K.T.Mahal, L.K. Lectin microarrays for glycoprotein analysis. Methods Mol. Biol.2008385, 193-203. doi: 10.1007/978-1-59745-426-1_14

2007

  1. Pilobello, K.T.; Slawek, D.; Mahal, L.K. A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc. Natl. Acad. Sci., USA, 2007104, 10534-10539. doi: 10.1073/pnas.0704954104
  2. Pilobello, K.T.Mahal, L.K. Deciphering the glycocode: The complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol.2007, 11, 300-305. doi: 10.1016/j.cbpa.2007.05.002

2006

  1. Carrillo, L.D.; Krishnamoorthy, L.Mahal, L.K. A cellular FRET sensor for β-O-GlcNAc, a aynamic carbohydrate modification involved in signaling. J. Am. Chem. Soc., 2006, 128, 14768-14769. doi: 10.1021/ja065835+
  2. Hsu, K.-L.Mahal, L. K. Profiling the sweet structures of the bacterial glycome. Nature Protocols20061, 543-549. doi: 10.1016/j.cbpa.2009.07.013
  3. Sanki, A.; Mahal, L.K. A one-step synthesis of azide-tagged carbohydrates: Versatile intermediates for glycotechnology. Synlett, 20063, 455-459. doi: 10.1055/s-2006-926264
  4. Hsu, K.-L.; Pilobello, K.T.; Mahal, L.K. Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nature Chem. Biol., 20062, 153-157. doi: 10.1038/nchembio767

2005

  1. Pilobello, K.T.; Krishnamoorthy, L.; Slawek, D.; Mahal, L.K. Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem, 2005, 6, 985-989. doi: 10.1002/cbic.200400403

2004

  1. Mahal, L.K. Catching bacteria with sugar. Chem. & Biol.200411, 1602-1604. doi: 10.1016/j.chembiol.2004.11.017

Postdoctoral Work

(with Prof. James E. Rothman, Sloan-Kettering Institute)
  1. Melia, T.J.; Weber, T.; McNew, J.A.; Fisher, L.E.; Johnston, R.J.; Parlati, F.; Mahal, L.K.; Söllner, T.H.; Rothman, J. E. Regulation of membrane fusion by conformational switching of  the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol., 2002, 158, 929-9. doi: 10.1083/jcb.200112081
  2. Mahal, L.K.; Sequeira, S.M.; Gureasko, J.M.; Söllner, T.H. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J. Cell Biol., 2002158, 273-282. doi: 10.1083/jcb.200203135

Graduate Work

(with Prof. Carolyn Bertozzi, U.C. Berkeley)
  1. Charter, N.W.; Mahal, L.K.; Koshland, D.E., Jr.; Bertozzi, C.R. Differential effects of unnatural sialic acids on the polysialylation of neuronal cell adhesion molecule and neuronal behaviour. J. Biol. Chem., 2002277, 9255-9261. doi: 10.1074/jbc.M111619200
  2. Mahal, L.K.; Charter, N.W.; Angata, K.; Fukuda, M.; Koshland, D.E., Jr.; Bertozzi, C.R. A small molecule modulator of poly-a-2,8-aialic acid expression on neurons and tumor cells. Science, 2001294, 380-381. doi: 10.1126/science.1062192
  3. Groves, J.T.; Mahal, L.K.; Bertozzi, C.R. Control of cell adhesion and growth with micropatterned supported lipid membranes. Langmuir, 200117, 5129-5233. doi: 10.1021/la010481f
  4. Jacobs, C.L.; Yarema, K.J.; Mahal, L.K.; Nauman, D.A.; Charter, N.W.; Bertozzi, C.R. Metabolic labeling of glycoproteins with chemical tags through unnatural sialic acid biosynthesis. Methods Enzymol., 2000327, 260-275. doi: 10.1016/S0076-6879(00)27282-0
  5. Charter, N.W.*; Mahal, L.K.*; Koshland, D.E., Jr.; Bertozzi, C.R. Biosynthetic incorporation of    unnatural sialic acids into polysialic acid on neural cells. Glycobiology, 200010, 1049-1056. doi: 10.1093/glycob/10.10.1049 * Co-first author
  6. Lee, J.H.; Baker, T.F.; Mahal, L.K.; Zabner, J.; Bertozzi, C.R.; Weimer, D. F.; Welsh, M. J.  Engineering novel cell surface receptors for virus-mediated gene transfer. J. Biol. Chem., 1999274, 21878-84. doi: 10.1074/jbc.274.31.21878
  7. Yarema, K.J.; Mahal, L.K.; Bruehl, R.E.; Bertozzi, C.R. Metabolic delivery of ketone groups to sialic acid residues. Application to cell surface glycoform engineering. J. Biol. Chem., 1998273, 31168-79. doi: 10.1074/jbc.273.47.31168
  8. Mahal, L.K.; Bertozzi, C.R. Engineered cell surfaces: Fertile ground for molecular landscaping. Chemistry & Biology, 19974, 415-22. doi: 10.1016/S1074-5521(97)90193-9
  9. Mahal, L.K.; Yarema, K.J.; Bertozzi, C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science, 1997276, 1125-1128. doi: 10.1126/science.276.5315.1125

Undergraduate Work

(with Prof. Rebecca Braslau, U.C. Santa Cruz)
  1. Braslau, R.; Burrill, L.C.; Siano, M.; Naik, N.; Howden, R.K.; Mahal, L.K. Low-temperature preparations of unimolecular nitroxide initiators for “living” free radical polymerizations. Macromolecules, 199730, 6445-6450. doi: 10.1021/ma970822p
  2. Braslau, R.; Burrill, L.C.;  Mahal, L.K.; Wedeking, T. A totally radical approach to the control of stereochemistry: Coupling of prochiral radicals with chiral nitroxyl radicals. Angewandte Chemie, 199736, 237-238. doi: 10.1002/anie.199702371
Scroll to Top