From the Mahal Lab

83. Nguyen, L.; McCord, K.A.; Bui, D.T.; Bouwman, K.M.; Kitova, E.N.; Elaish, M.; Kumawat, D.; Daskhan, G.C.; Tomris, I.; Han, L.; Chopra, P.; Yang, T.-J.; Willows, S.D.; Mason, A.L.; Mahal, L.K.; Lowary, T.L.; West, L.J.; Hsu, S.-T.D.; Hobman, T., Tompkins, S.M.; Boons, G.-J.; de Vries, R.P.; Macauley, M.S.; Klassen, J.S. Sialic acid-Dependent Binding and Viral Entry of SARS-CoV-2. Nature Chemical Biology, 2021, in Press.

82. Bojar, D.; Meche, L.; Meng, G.; Eng, W.; Smith, D.F.; Cummings, R.D.; Mahal, L.K.  A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. 2021, bioRixv, doi: 10.1101/2021.08.31.458439.  

81. Li, Z.; Kitov, P.; Kitova, E.; Bui, D.; Moremen, K.; Wakarchuk, W.; Mahal, L.K.; Macauley, M.; Klassen, J. Quantifying CAZyme Activity with Glycoprotein Substrates using ESI-MS and Center-of-Mass Monitoring (CoMMon), Analytical Chemistry, 2021, in Press.

80. Jung, J.; Enterina, J.R.; Bui, D.T.; Mozaneh, F.; Lin, P.-H.; Nitin; Kuo, C.-W.; Rodrigues, E.; Bhattacherjee, A.; Raeisimakiani, P.; Daskhan, G.C.; St. Laurent, C.D.; Khoo, K.-H.; Mahal, L.K.; Klassen, J.S.; Macauley, M.S. Carbohydrate sulfation as a mechanism for fine-tuning Siglec ligands. ACS Chemical Biology, 2021, in Press. doi: 10.1021/acschembio.1c00501. (Formerly bioRixv doi: 10.1101/2021.06.27.450109)

79. Chen, S.; Vurusaner, B.; Pena, S.; Chu, T.; Mahal, L.K.; Fisher, E.; Canary, J. A two-photon, ratiometric, quantitative fluorescent probe reveals fluctuation of peroxynitrite regulated by arginase 1. Analytical Chemistry, 2021, 93, 10090-10098. doi:10.1021/acs.analchem.1c00911.

78. Thu, T.C.; Chung, J.Y.; Dhawan, D.; Vaiana, C.A.; Mahal, L.K. High-Throughput miRFluR Platform Identifies miRNA Regulating B3GLCT That Predict Peters’ Plus Syndrome Phenotype, Supporting the miRNA Proxy Hypothesis.  ACS Chemical Biology,  2021, 16, 1900-1907. doi: 10.1021/acschembio.1c00247.  (Formerly bioRixv, doi: 10.1101/2021.04.01.43813).

77. Kurz, E.; Chen, S.; Vucic, E.; Baptiste, G.; Loomis, C.; Agarwal, P.; Hajdu, C.; Bar-Sagi, D.; Mahal, L.K. Integrated Systems-Analysis of the Murine and Human Pancreatic Cancer Glycomes Reveals a Tumor Promoting Role for ST6GAL1. Molecular and Cellular Proteomics, 2021, in press. doi: 10.1016/j.mcpro.2021.100160. (Formerly bioRixv. doi: 10.1101/2021.03.10.434864.)

76. Kuman, A.; Ishida, R.; Strilets, T.; Cole, J.; Lopez-Orozco, J.; Fayad, N.; Felix-Lopez, A.; Elaish, M.; Evseev, D.; Magor, K.; Mahal, L.K.; Nagata, L.; Evans, D.; Hobman, T.  SARS-CoV-2 non-structural protein 1 inhibits the interferon response by causing depletion of key host signaling factors. Journal of Virology, 2021, in Press.

75. Koussa, J.; Vitrinel, B.; Whitney, P.; Kasper, B.; Mahal, L.K.; Vogel, C.; Iustigman, S.; Salehi-Ashtiani, K.; Ghedin, E.  Sex-specific glycosylation of secreted immunomodulatory proteins in the filarial nematode Brugia malayi  2021, bioRixv. doi: 10.1101/2021.02.24.432741.

74. Chen, S.; Qin, R.; Mahal, L.K.  Technologies for Glycomic Analysis and their Integration into Systems Biology. Critical Reviews in Biochemistry and Molecular Biology,  2021, 5, 1-20. doi: 10.1080/10409238.2021.1908953

73. Noordwijk, K.J.; Qin, R.; Diaz-Rubio, M.E.; Zhang, S.; Su, J.; Mahal, L.K.; Reesink, H.L.  Metabolism and global protein glycosylation are differentially expressed in the healthy and osteoarthritic equine carpal synovial fluid. Equine Veterinary Journal , 2021, in Press. doi:10.1111/evj.13440.

72. Báez Bolivar, E; Bui, D.; Kitova, E.; Han, L.; Zheng, R.; Luber, E.; Sayed, S.; Mahal, L.K.; Klassen, J.  Submicron Emitters Enable Reliable Quantification of Weak Protein-Glycan Interactions by ESI-MS.  Analytical Chemistry, 2021, 93 4231-4239. doi: 10.1021/acs.analchem.0c05003.

71. Song, W.-M.; Agrawal, P.; Von Itter, R.W.; Fontanals-Cirera, B.; Wang, M.; Zhou, X.; Mahal, L.K.; Hernando, E.; Zhang, B. Integration of Multi-Omics Data Identifies Novel Network Models of Primary Tumor Microenvironment and Key Regulators of Melanoma. Nature Communications,  2021  12, 1214. doi: 10.1038/s41467-021-21457-0.

70. Qin, R.; Mahal, L.K. The Host Glycomic Response to Pathogens. Current Opinions in Structural Biology, 2021,  68, 149-156. doi: 10.1016/

69. Heindel, D.W.; Aziz, P.A.; Chen, S.; Marth, J.D.; Mahal, L.K.  Glycomic analysis reveals a conserved response to bacterial sepsis induced by different bacterial pathogens. bioRxiv, 2020, doi: 10.1101/2020.12.11.421610.

68. Bernard, I.: Limonta, D.; Mahal, L.K.; Hobman, T.C. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses, 2020, 13, E29. doi: 10.3390/v13010029.

67. Kasper, D.M.; Hintzen, J.; Wu, Y.; Ghersi, J.J.; Mandl, H.K.; Salina, K.E.; Armero, W.; Hel, Z.; Sheng, Y.; Heindel, D.W.; Park, E.J.; Sessa, W.C.; Mahal, L.K.; Lebrilla, C.; Hirschi, K.K.; Nicoli, S. The N-Glycome regulates the endothelial to hematopoietic transition. Science, 2020, 370, 1186-1191. doi: 10.1126/science.aaz2121

66. Chu, T; Mahal, L.K. Sweet Control: MicroRNA Regulation of the Glycome. Biochemistry,  2020, 59, 3098-3110. doi: 10.1021/acs.biochem.9b00784.

65. De Leoz, M.L., et al. NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Molecular and Cellular Proteomics, 2020, 19, 11-30. doi: mcp.RA119.001677.

64. Heindel, D.W.; Koppolu, S.; Zhang, Y.; Kasper, B.; Meche, L.; Vaiana, C.A.; Bissel, S.J.; Carter, C.E.; Kelvin, A.A.; Zhang, B.; Zhou, B.; TChou, T.-W.; Lashua, L.; Ross, T.M.; Ghedin, E.; Mahal, L.K. Glycomic Analysis of host-response reveals high mannose as a key mediator of influenza severity. Proc. Nat. Acad. Sci. U.S.A. 2020, 117, 26926-26935. doi: 10.1073/pnas.2008203117.  (Formerly bioRxiv  doi: 10.1101/2020.04.21.054098)

63. Chen, S.; Kasper, B.; Zhang, B.; Lashua, L.P.; Ross, T.M.; Ghedin, E.; Mahal, L.K. Age-dependent glycomic response to the 2009 pandemic H1N1 influenza virus and its association with disease severity.  J. Proteome Research, 2020, 19, 4486-4495. doi: 10.1021/acs.jproteome.0c00455.   (Formerly bioRxiv doi: 10.1101/2020.06.22.165613)

62. Bandini, G.; Leon D.R.; Hoppe, C.M.; Zhang, Y.; Agop-Nersesian, C.; Shears, M.J.; Mahal, L.K.; Routier, F.H.; Costello, C.E.; Samuelson, J. O-fucosylation of thrombospondin-like repeats is required for processing of microneme protein 2 and for efficient host cell invasion by Toxoplasma gondii tachyzoites. J. Biol. Chem,  2019, 294, 1967-1983. doi: 10.1074/jbc.RA118.005179.

61. Madeline Y Wong , Kenny Chen , Aristotelis Antonopoulos , Brian T Kasper , Mahender B Dewal , Rebecca J Taylor , Charles A. Whittaker , Pyae P Hein , Anne Dell , Stuart M Haslam , Lara K. Mahal , Matthew D. Shoulders XBP1s Activation Can Globally Remodel N-Glycan Structure Distribution Patterns Proc. Natl. Acad. Sci., USA, 2018, 115, E10089-E10098. Co-corresponding authors. 

60. Koppolu, S.; Wang, L.; Mathur, A.; Nigam, J.A.; Dezzutti, C.S.; Isaacs, C.; Meyn, L.; Bunge, K.E.; Moncla, B.J.; Hillier, S.L.; Rohan, L.C.; Mahal, L.K. Vaginal Product Formulation Alters the Innate Anti-viral Activity and Glycome of Cervicovaginal Fluids with Implications for Viral Susceptibility. ACS Infectious Disease, 2018, 4, 1613-1622. doi: 10.1021/acsinfecdis.8b00157.

59Gaschler, M.M.; Andia, A.A.; Csuka, J.; Hurlocker, B.; Vaiana, C.A.; Zuckerman, D.S.; Liu, H.; Heindel, D.W.; Bos, P.H.; Reznik, E.; Ye, L.; Tyurina, Y.Y.; Lin, A.; Shchepinov, M.; Chan, A.Y.; Peguero-Periera, E.; Fomich, M.A.; Bekish, A.V.; Shmanai, V.V.; Kagan, V.E.; Mahal, L.K.; Stockwell, B. R.; Woerpel, K.A. FINO2 Initiates Ferroptosis Through Gpx4 Inactivation and Iron Oxidation. Nature Chemical Biology, 2018, 15, 507-515. doi: 10.1038/s41589-018-0031-6

58. Agrawal, P; Fontanals-Cirera, B.; Sokolova, E.; Jacob, S.; Vaiana, C.A.; Argibay, D.; Davalos, V.; McDermott, M.; Nayak, S.; Darvishian, F.; Castillo, M.; Ueberheide, B.; Osman, I.; Fenyö, D.; Mahal, L.K.;; Hernando, E.‡  A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. Cancer Cell 201731, 804-819. doi:10.1016/j.ccell.2017.05.007. ‡ Co-corresponding authors.

57. Daley, D.; Mani, V.R; Mohan, N.; Akkad, N.; Ochi, A.; Lee, K.B.; Heindel, D.W., Zambrinis, C.O.; Werba, G.; Barrilla, R.M.; Torres-Hernandez, A.; Nayak, S.; Wang, D.; Hundeyin, M.; Ismail, K.; Diskin, B.; Aykut, B.; Rodriguez, R.; Chang, S.; Gardner, L.; Mahal, L.K.; Ueberheide, B.; Miller, G. Dectin-1 Activation on Macrophages by Galectin-9 Promotes Pancreatic Carcinoma and Peritumoral Immune-Tolerance. Nature Medicine 201723, 556-567. doi: 10.1038/nm.4314.

56. Neelamegham, S.; Mahal, L.K. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr. Opin. Struct. Biol.201640, 145-152.

55. Ribeiro, J.P.; Pau, W.K.; Pifferi, C.; Renaudet, O; Varrot, A; Mahal, L.K.; Imberty, A. Characterization of a high-affinity sialic acid specific CBM40 from Clostridium perfringens and engineering of a divalent form. Biochem. J. 2016473, 2109-18doi: 10.1042/BCJ20160340. ‡ Co-corresponding authors.

54. Grant, O.C.; Tessier, M.B.; Meche, L.; Mahal, L.K.; Foley, B.L.; Woods, R.J. Combining 3D Structure with Glycan Array Data Provides Insight into the Origin of Glycan Specificity. Glycobiology, 201626, 772-83. doi: 10.1093/glycob/cww020.

53. Hoashi, M.; Meche, L.; Mahal, L.K.; Bakacs, E.; Nardella, D.; Naftolin, F.; Bar-Yam, N.; Dominguez-Bello, M.G. Human Milk Bacterial and Glycosylation Patterns Differ by Delivery Mode. Reproductive Sciences201623, 902-7. doi: 10.1177/1933719115623645.

52. Agre, P.; Bertozzi, C.; Bissell, M.; Campbell, K.; Cummings, R.; Desai, U.; Estes, M.; Flotte, T.; Fogleman, G.; Gage, F.; Ginsburg, D.; Gordon, J.; Hart, G.; Hascall, V.; Kiessling, L.; Kornfeld, S.; Lowe, J.; Magnani, J.; Mahal, L.K.; Medzhitov, R.; Roberts, R.; Sackstein, R.; Sarkar, R.; Schnaar, R.; Schwartz, N.; Varki, A.; Walt, D.; Weissman, I. Training the Next Generation of Biomedical Investigators in Glycoscience, J. Clin. Invest.2016126, 405-408.

51. Vaiana, C.A.; Kurcon, T.; Mahal, L.K. MicroRNA-424 Predicts a Role for β-1,4 Branched Glycosylation in Cell Cycle Progression. J. Biol. Chem., 2016291, 1529-37doi: 10.1074/jbc.M115.672220.

50. Kurcon, T.; Liu, Z.; Paradkar, A.V.; Vaiana, C.A.; Koppolu, S.; Agrawal, P.; Mahal, L.K.miRNA proxy approach reveals hidden functions of glycosylation. Proc. Natl. Acad. Sci., USA, 2015112, 7327-32. doi: 10.1073/pnas.1502076112.

49. Moncla, B.J.; Chappell, C.A.; Mahal, L.K.;Debo, B.M.; Meyn, L.A.; Hillier, S.L. Impact of bacterial vaginosis, as assessed by nugent criteria and hormonal status on glycosidases and lectin binding in cervicovaginal lavage samples. PLoS One201510, e0127091. doi: 10.1371/journal.pone.0127091.

48. Wang, L.; Koppolu, S.; Chappell, C.; Moncla, B.J.; Hillier, S.L.; Mahal, L.K. Studying the effects of reproductive hormones and bacterial vaginosis on the glycome of lavage samples from the cervicovaginal cavity. PLoS One201510, e0127021. doi: 10.1371/journal.pone.0127021.

47. Ng, S.; Lin, E; Kitov, P.I.; Tjhung, K.F.; Gerlits, O.O.; Deng, L.; Kasper, B.; Sood, A.; Paschal B.M.; Zhang, P.; Ling, C.C.; Klassen, J.S.; Noren, C.J.; Mahal, L.K., Woods, R.J.; Coates, L.; Derda, R. Genetically encoded fragment-based discovery of glycopeptide ligands for carbohydrate-binding proteins. J. Am. Chem. Soc.2015137, 5248-51. doi: 10.1021/ja511237n.

46. Bonzi, J.; Bornet, O.; Betzi, S.; Kasper, B.; Mahal, L.K.; Mancini, S.; Schiff, C.; Sebban-Krauzer, C.; Guerlesquin, F.; Elantak, L. Binding of Galectin-1 to Pre-B Receptor Modulates Specific Galectin/Glycan Lattice Interactions Within the Bone Marrow Pre-BII Cell Niche. Nature Communications2015, 6, 6194. doi: 10.1038/ncomms7194.

45. Liang, Y.; Eng, W.S.; Colquhoun, D.R.; Dinglasan, R.R.; Graham, D.R.; Mahal, L.K.Complex N-linked Glycans Serve as a Determinant for Exosome/Microvesicle Cargo Recruitment. J. Biol. Chem., 2014289, 32526-37. doi: 10.1074/jbc.M114.606269.

44. Wang, L.; Cummings, R.D.; Smith, D.F.; Huflejt, M.; Campbell, C.T.; Gildersleeve, J.D.; Gerlach, J.Q.; Kilcoyne, M.; Joshi, L.; Serna, S.; Reichardt, N.-C.; Pera, N.P.; Pieters, R.; Eng, W.S.; Mahal, L.K.Cross-Platform Comparison of Glycan Microarray Formats. Glycobiology, 2014, 24, 507-517. Doi: 10.1093/glycob/cwu019.

43. Agrawal, P.; Kurcon, T.; Pilobello, K.T.; Rakus, J.F.; Koppolu, S.; Liu, Z.; Batista, B.S.; Eng, W.S., Hsu, K.-L.; Liang, Y.; Mahal, L.K.Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc. Natl. Acad. Sci., USA, 2014111, 4338-43. doi: 10.1073/pnas.1321524111.

42. Kasper, B.T.; Koppolu, S.; Mahal, L.K. Insights into MiRNA Regulation of the Human Glycome. Biochem. Biophys. Res. Commun. 2014,445, 774-9. doi: 10.1016/j.bbrc.2014.01.034.

41. Ribeiro, J.P.; Mahal, L.K.Dot by dot: analyzing the glycome using lectin microarrays. Curr. Opin. Chem. Biol. 201317, 827-31.

40. Pilobello, K.T; Agrawal, P.; Rouse, R.; Mahal, L.K.Advances in lectin microarray technology: Optimized protocols for piezoelectric print conditions. Curr. Prot. Chem. Biol. 2013, 5, 1-23.

39. Bird-Lieberman, E.L.; Neves, A.A.; Lao-Sirieix, P.; O’Donovan, M.; Novelli, M.; Lovat, L.B.; Eng, W.S.; Mahal, L.K.; Brindle, K.M.; Fitzgerald, R.C. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat. Medicine201218, 315-21.

38. Reuel, N.F.; Ahn, J.-H.; Kim, J.-H.; Zhang, J.; Boghossian, A.A.; Mahal, L.K.; Strano, M.S. Transduction of Glycan␣Lectin Binding Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes for Glycan Profiling. J. Am. Chem. Soc., 2011133, 17923-33.

37. Batista, B.S.; Eng, W.S.; Pilobello, K.T.; Hendricks-Muñoz, K.; Mahal, L.K.Identification of a     Conserved Glycan Signature for Microvesicles. J. Proteome Res. 201110, 4624-33.

36. Gaziel-Sovran, A; Segura, M.F.; Di Micco, R; Collins, M.K.; Hanniford, D.; Vega-Saenz de Miera, E.; Rakus, J.F.; Dankert, J.F.; Shang, S.; Kerbel, R.S.; Bhardwaju, N.; Yongzhao, S.;    Darvishan, F.; Zavadil, J.; Erlebacher, A.; Mahal, L.K.; Osman, I.; Hernando, E. MiR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell 201120, 104-18.

35. Propheter, D.C.; Hsu, K.-L.; Mahal, L.K. Recombinant lectin microarrays for glycomic analysis. Methods Mol. Biol. 2011723, 67-77.

34. Rakus, J.F.; Mahal, L.K. New Technologies for Glycomic Analysis: Toward a Systematic  Understanding of the Glycome. Ann. Rev. Anal. Chem. 2011, 4, 367-92.

33. Propheter, D.C.; Mahal, L.K.Orientation of GST-tagged lectins via in situ surface modification to create an expanded lectin microarray for glycomic analysis. Mol. Biosystems 20117, 2114-7.

32. Krishnamoorthy, L.K.; Mahal, L.K., Lectin Microarrays: Simple Tools for the Analysis of  Complex Glycans, chapter in Functional and Structural Proteomics of Glycoproteins, eds. Owens, R.J; Nettleship, J.E., 2011, Springer Verlag.

31. Carillo, L.D.; Froemming, J.A.; Mahal, L.K., Targeted in Vivo O-GlcNAc Sensor Reveals Discrete Compartment-specific Dynamics During Signal Transduction. J. Biol. Chem. 2011,   286, 6650-6658.

30. Hsu, KL; Pilobello, K.; Krishnamoorthy, L; Mahal, L.K., Ratiometric lectin microarray analysis of the mammalian cell surface glycome. Methods Mol. Biol.2011671, 117-31.

29.Propheter, D.C.; Hsu, K.-L.; Mahal, L.K. Fabrication of an Oriented Lectin Microarray,  ChemBioChem201011, 1203-1207.

28. Krishnamoorthy L.; Mahal L.K.Glycomic analysis: an array of technologies. ACS Chem Biol. 2009, 4, 715-732.

27. Lebrilla C.B.; Mahal L.K. Post-translation modifications. Curr Opin Chem Biol. 200913, 373-374.

26. Hsu K.L.; Mahal L.K.Sweet tasting chips: microarray-based analysis of glycans. Curr Opin Chem Biol. 2009. 13, 427-432.

25. Krishnamoorthy, L.; Bess, J.W.; Preston, A.B.; Nagashima, K.; Mahal, L.K.HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin, Nature Chem. Biol. 2009 5, 244-250.

24. Hsu, K.-L.; Gildersleeve, J.C.; Mahal, L.K. A simple strategy for the creation of a recombinant lectin microarray, Mol. BioSystems20084, 654-662.

23. Mahal, L.K.Glycomics: Towards Bioinformatic Approaches to Understanding Glycosylation,  Anti-Cancer Agents Med. Chem.20088, 37-51.

22. Pilobello, K.T.; Mahal, L.K. Lectin Microarrays for Glycoprotein Analysis, Methods Mol. Biol.2008385, 193-203.

21. Pilobello, K.T.; Slawek, D.; Mahal, L.K.A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome, Proc. Natl. Acad. Sci., USA, 2007104, 10534-10539.

20. Pilobello, K.T.; Mahal, L.K.Deciphering the glycocode: the complexity and analytical challenge of glycomics, Curr. Opin. Chem. Biol.2007 11, 300-305.

19. Carrillo, L.D.; Krishnamoorthy, L.; Mahal, L.K.A Cellular FRET Sensor for β-O-GlcNAc, a Dynamic Carbohydrate Modification Involved in Signaling, J. Am. Chem. Soc., 2006, 128, 14768-14769.

18. Hsu, K.-L.; Mahal, L. K.Profiling the sweet structures of the bacterial glycome. Nature Protocols20061, 543-549.

17. Sanki, A.; Mahal, L.K.A One-Step Synthesis of Azide-Tagged Carbohydrates: Versatile Intermediates for Glycotechnology. Synlett 20063, 455-459.1

16. Hsu, K.-L.; Pilobello, K.T; Mahal, L.K.Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nature Chem. Biol. 20062, 153-157.

15. Pilobello, K.T.; Krishnamoorthy, L.; Slawek, D.; Mahal, L.K.Development of a Lectin Microarray for the Rapid Analysis of Protein Glycopatterns. ChemBioChem 2005, 6, 985-989.

14. Mahal, L.K. Catching Bacteria with Sugar. Chem. & Biol.200411, 1602-1604.

13. Melia, T.J.; Weber, T.; McNew, J.A.; Fisher, L.E.; Johnston, R.J.; Parlati, F.; Mahal, L.K.; Söllner, T.H.; Rothman, J. E. Regulation of Membrane Fusion by Conformational Switching of  the Membrane-Proximal Coil of the t-SNARE During Zippering of SNAREpins. J. Cell Biol.2002, 158, 929-9.

12. Mahal, L.K.;Sequeira, S.M.; Gureasko, J.M.; Söllner, T.H. Calcium-Independent Stimulation of Membrane Fusion and SNAREpin Formation by Synaptotagmin I. J. Cell Biol. 2002158, 273-282.

11. Charter, N.W.; Mahal, L.K.; Koshland, D.E., Jr.; Bertozzi, C.R. Differential Effects of Unnatural Sialic Acids on the Polysialylation of Neuronal Cell Adhesion Molecule and Neuronal Behaviour. J. Biol. Chem. 2002277, 9255-9261.

10. Mahal, L.K.; Charter, N.W.; Angata, K.; Fukuda, M.; Koshland, D.E., Jr.; Bertozzi, C.R. A Small Molecule Modulator of Poly-a-2,8-Sialic Acid Expression on Neurons and Tumor Cells. Science 2001294, 380-381.

9. Groves, J.T.; Mahal, L.K.; Bertozzi, C.R. Control of Cell Adhesion and Growth with Micropatterned Supported Lipid Membranes. Langmuir 200117, 5129-5233.

8. Jacobs, C.L.; Yarema, K.J.; Mahal, L.K.; Nauman, D.A.; Charter, N.W.; Bertozzi, C.R. Metabolic Labeling of Glycoproteins with Chemical Tags through Unnatural Sialic Acid Biosynthesis. Methods Enzymol. 2000327, 260-275.

7. Charter, N.W.*; Mahal, L.K.*; Koshland, D.E., Jr.; Bertozzi, C.R. Biosynthetic Incorporation of    Unnatural Sialic Acids into Polysialic Acid on Neural Cells. Glycobiology 200010, 1049-1056. * co-first author.

6. Lee, J.H.; Baker, T.F.; Mahal, L.K.; Zabner, J.; Bertozzi, C.R.; Weimer, D. F.; Welsh, M. J.  Engineering Novel Cell Surface Receptors for Virus-Mediated Gene Transfer. J. Biol. Chem. 1999274, 21878-84.

5. Yarema, K.J.; Mahal, L.K.; Bruehl, R.E.; Bertozzi, C.R. Metabolic Delivery of Ketone Groups     to Sialic Acid Residues. Application To Cell Surface Glycoform Engineering. J. Biol. Chem. 1998273, 31168-79.

4. Mahal, L.K.; Bertozzi, C.R. Engineered Cell surfaces: fertile ground for molecular landscaping Chemistry & Biology 19974, 415-22.

3. Mahal, L.K.; Yarema, K.J.; Bertozzi, C.R. Engineering Chemical Reactivity on Cell Surfaces Through Oligosaccharide Biosynthesis. Science1997276, 1125-1128.

2. Braslau, R.; Burrill, L.C.; Siano, M.; Naik, N.; Howden, R.K.; Mahal, L.K. Low-Temperature Preparations of Unimolecular Nitroxide Initiators for “Living” Free Radical Polymerizations, Macromolecules 199730, 6445-6450.

1. Braslau, R.; Burrill, L.C.;  Mahal, L.K.;Wedeking, T.  A Totally Radical Approach to the Control of Stereochemistry: Coupling of Prochiral Radicals with Chiral Nitroxyl Radicals. Angewandte Chemie 199736, 237-238.


Scroll to Top